Merton Presentations 2012


Tuesday, 6 March, 16:00-19:00, Hawkins Room

Rehearsals: Week 7, Thursday (Ian Taylor Room) and Friday (Hawkins Room), 16:00-18:00.


Title: Where Physics and the UN meet: how can climate science inform public policy?

Abstract: In this talk I will explore the interface between climate science and public policy. I will examine how climate scientists use computer modelling to predict future climate scenarios, and how these findings can be used to inform policymakers. By examining the literature around this area, I will talk about the different approaches to the problem and examine the misconceptions about the important features of an emissions reduction profile that will avoid dangerous climate change. I will conclude that there is a dangerous mismatch between the science and the policy, which must be urgently addressed.


Title: Neutrinos: A Biography

Abstract: Firstly, I will explain why neutrinos were first postulated by Pauli as mystery particles that were necessary to maintain conservation laws.  I will then go on to describe the properties of the neutrino why these properties make it hard to detect and how this is overcome. From this I will go on to talk about the results from OPERA. Firstly I will describe how the measurements were taken and what the results said. I will discuss about why most scientists believe these results to be false, referring to the experiment involving Supernova 1987A. Then I would like to speculate at what if the results were genuine. I want to say why this would be exciting for young theoretical physicists  and also discuss some of the possible theories that have been talked about.


Title: A (very) brief introduction to quantum computing

Abstract: I will begin by discussing the history of quantum computing and outline the consequences to society which would result if or when it ever becomes feasible, such as the security of internet communications. I will then go on to outline the basic principles of quantum computing and why a quantum computer would be so computationally potent whilst also relating these principles to those of classical computers. Following this, I will discuss briefly some of the practical difficulties in constructing and operating a quantum computer.


Title: False Assumption about Organic Light Emitting Diode Operation, Manufacture and Materials

Abstract: I will briefly describe the operation of two types of organic electroluminescent device, OLED and Light Emitting Electrochemical Cell. I will discuss how they are made briefly and why they are made using these methods. Then I will talk about the fact that these two routes of manufacture are used, on the assumption that the materials have low thermal degradation, (at least for polymer based devices.) This statement cannot be made with any confidence this parameter has been measured for <10% of OLED materials. These OLED materials will in fact survive melt processes, briefly discussing how I showed this. Then I will discuss advantages and disadvantages of the melt process, and how it can be improved by using a Light Emitting Electrochemical cell system.


Title: Destroying planet Earth the in most energy efficient manner

Abstract: In this talk I will begin by outlining a definition for the destruction of planet earth as this is a necessary prerequisite to properly considering methods to attain that aim. We also have to consider a time-frame for project completion as the entity interested in this venture will be a living being so this should be done within a lifetime. I will then consider the physics of some of the most interesting, most efficient, and most achievable methods under current technology. I will also need to consider methods that are currently unrealistic but could be achieved sometime in the future. I will then come to a conclusion from the research and calculations I have done to advise on the method which I believe to have the lowest energy cost whilst still retaining a good chance of geocide in a reasonable time frame.


Title: Dark Matter & Dark Energy: how far do we know the Universe?

Abstract: In this presentation I will give a brief account of why the need for such thing as "Dark Matter" to exist arises. I will also discuss what the likely candidates for Dark Matter are, with advantages and disadvantages for each. Then I will briefly address the topic of "Dark Energy", and how it arises from the recent  discovery that the expansion of the Universe could be accelerating.


Title: Balancing the Solar System

Abstract:To begin with I'd like to talk about orbital resonance, expand a bit on the theory of it and give some examples (like the gaps in saturn's rings). I'd also then like to talk about the differences between stable and unstable resonances and possibly its role in allowing larger bodies to eject bodies in a similar orbit out of the solar system. I'd then like to talk about the chaotic nature of the solar system and how models of it tend to fail and talk about the time scales on which that happens. Then I'd like to look at the precession of orbits. I'd then like to combine these ideas together to study the orbit of Mercury and how it interacts with other bodies in the solar system (particularly Jupiter) and the resulting effect on the shape of Mercury's orbit.


Title: Quantum Mechanics vs. The Economy; Schrodinger Fat Cat and its Bonus.

Abstract: This talk will discuss the relationships between Quantum Mechanics and our Global Economy, going to speculate on the causes on the recent recession and on how, as Physicists, we can avoid further catastrophe. Firstly, I will discuss Game Theory and the how, from a scientific point of view, an analytical mind is far more successful than an emotive one, often leading to rather surprising results. I will then talk about the similarities between Zero Point energy, and liquidity and leverage (or interest rate), coining the term Zero Point Money. Finally, the Big One, I will try to philosophise on a method of calculating risk, and economic probability, using Quantum Amplitudes and interference.


Title: Supernovae: The Basics

Abstract: I will be talking about supernovae, types I and II, giving a description of what the different types are, and how they might occur, i.e. from accretion from a stellar companion, merging etc. I will also describe how these processes transform one type of stellar body into another, as in the transformation of a white dwarf into a neutron star, and talk about the discovery of supernovae while showing some examples of the ones we have observed.